Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

(2,2'-Diamino-4,4'-bi-1,3-thiazole$\left.\kappa^{2} N^{3}, N^{3^{\prime}}\right)\left(\right.$ oxydiacetato- $\left.\kappa^{3} O, O^{\prime}, O^{\prime \prime}\right)$ copper(II) monohydrate

Zhi-Yong Wu, ${ }^{\text {a }}$ Duan-Jun Xu, ${ }^{\text {a* }}$ Yue Luo, ${ }^{\text {a }}$ Jing-Yun Wu ${ }^{\text {b }}$ and Michael Y. Chiang ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
Correspondence e-mail: xudj@mail.hz.zj.cn
Received 13 May 2003
Accepted 17 June 2003
Online 12 July 2003

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, displays a square-pyramidal coordination geometry. The tridentate oxydiacetate dianion chelates the $\mathrm{Cu}^{\mathrm{II}}$ atom in the facial mode. The large difference $[0.487(4) \AA$] between the longest $\mathrm{Cu}-\mathrm{O}$ distance in the basal plane and that in the apical direction correlates with the small displacement of the $\mathrm{Cu}^{\mathrm{II}}$ atom [0.0576 (13) Å] from the basal plane towards the apex of the square pyramid. The intermolecular hydrogen-bonding network results in a closely overlapped arrangement of the coordination basal plane and the thiazole ring of a neighboring molecule.

Comment

Transition metal complexes with $2,2^{\prime}$-diamino-4, 4^{\prime}-bithiazole (DABT) or its derivatives have shown interesting properties and have potential applications in many fields (Waring, 1981; Fisher et al., 1985). A series of metal complexes with DABT has been prepared in our laboratory (Liu et al., 2001). As part of this investigation, the $\mathrm{Cu}^{\text {II }}$ complex, (I), with DABT and oxydiacetate (ODA) has recently been prepared and its X-ray structure is presented here.

(I)

The molecular structure of (I) is illustrated in Fig. 1. Two N atoms of the DABT molecule and two O atoms from the carboxyl groups of the ODA ligand form the basal coordina-
tion plane, with the maximum deviation being 0.0017 (12) \AA for atom N3, while atom O5 of the ODA ligand occupies the apical position, thus completing the square-pyramidal coordination geometry around the $\mathrm{Cu}^{\mathrm{II}}$ atom. The $\mathrm{Cu}-\mathrm{O}$ distance of 2.442 (3) \AA in the apical direction is longer than those in the basal plane by 0.512 (4) and 0.487 (4) \AA (Table 1). These large differences correlate with the small displacement of the $\mathrm{Cu}^{\mathrm{II}}$ atom $[0.0576$ (13) \AA A from the basal plane towards the apex. This configuration is similar to that found in $\mathrm{Cu}^{\mathrm{II}}$ complexes with a square-pyramidal geometry. For example, the large difference of 0.478 (6) \AA in $\mathrm{Cu}-\mathrm{O}$ distances correlated with the smaller $\mathrm{Cu}^{\text {II }}$ displacement of 0.0919 (9) \AA in an acetato(aqua)copper(II) complex (Christou et al., 1990), whereas the smaller difference of 0.314 (7) \AA correlated with the larger $\mathrm{Cu}^{\text {II }}$ displacement of 0.1963 (8) \AA in an aqua(isonicotinato)copper(II) complex (Xu et al., 1998).

The tridentate ODA ligand chelates to the $\mathrm{Cu}^{\mathrm{II}}$ atom in the facial coordination mode, with an O atom from each of the carboxyl groups of the ODA ligand coordinating to the $\mathrm{Cu}^{\mathrm{II}}$ atom in a cis configuration. A search of the Cambridge Structural Database (Allen, 2002) indicated that the facial mode is a rare configuration for ODA in transition metal complexes, and only one $\mathrm{Cu}^{\text {II }}$ complex, namely aqua($2,2^{\prime}$ bipyridyl)(oxydiacetato)copper(II), (II), has previously been found to exhibit the facial mode (Bonomo et al., 1981). The $\mathrm{Cu}-\mathrm{O} 5$ bond distance of 2.442 (3) \AA in (I) is almost identical to the equivalent bond length of 2.458 (4) \AA found in (II). The $\mathrm{Cu}-\mathrm{O} 5-\mathrm{C} 12 \quad\left[102.47(19)^{\circ}\right]$ and $\mathrm{Cu}-\mathrm{O} 5-\mathrm{C} 14$ angles [100.32 (19) ${ }^{\circ}$] in (I) are much smaller than those found in transition metal complexes with ODA in a typical meridional mode (120°; Bresciani-Pahor et al., 1983; Hatfield et al., 1987; Powell et al., 1992).

Water atom O6 forms a hydrogen bond with the uncoordinated carboxyl atom O 2 but does not coordinate to the $\mathrm{Cu}^{\mathrm{II}}$ atom as a sixth donor (Fig. 1). In the expected sixth coordination site, there is a thiazole ring from the adjacent complex molecule (see Fig. 2). This thiazole ring is nearly parallel to the coordination basal plane of the Cu atom [dihedral angle $\left.=7.39(10)^{\circ}\right]$ and the perpendicular out-of-plane distance for the Cu atom is 3.474 (6) \AA. A similar observation was made for the tyrosinate-copper(II) complex and was

Figure 1
The molecular structure of (I), with displacement ellipsoids shown at the 50% probability level. Dashed lines indicate intramolecular hydrogen bonding.

Figure 2
A view of the hydrogen-bonding network, showing the thiazole ring located beneath the basal plane of the Cu atom. [Symmetry code: (v) $1-x, 1-y, 1-z$.]
interpreted as a weak interaction between the π-electron system of the aromatic ring and the neighboring $\mathrm{Cu}^{\mathrm{II}}$ atom (Van der Helm \& Tatsch, 1972). However, in (I), the shortest separation [3.383 (4) \AA for $\mathrm{Cu} \cdots \mathrm{C}^{\text {/v }}$; symmetry code: (v) $1-x, 1-y, 1-z]$ between the Cu atom and the thiazole ring is slightly larger than the sum of the van der Waals radii of the Cu and C atoms (Rodgers, 1994). Therefore, it can be assumed that a normal van der Waals contact occurs between the Cu atom and the neighboring thiazole ring.

The DABT molecule chelates the $\mathrm{Cu}^{\mathrm{II}}$ atom in a cis configuration. The angle between the planes of the thiazole rings is $6.52(9)^{\circ}$, while an angle of $8.44(8)^{\circ}$ is found in a DABT complex of $\mathrm{Cd}^{\mathrm{II}}$ (Liu et al., 2003) and an angle of 7.91 (9) ${ }^{\circ}$ is found in a DABT complex of $\mathrm{Ni}^{\mathrm{II}}$ (Baker \& Goodwin, 1985).

An intermolecular hydrogen-bonding network occurs in the crystal structure (Fig. 2 and Table 2). Lattice water molecules bridge complex molecules via hydrogen bonds, and the complex molecules are also linked directly to one another via hydrogen bonds between the carboxyl and amine groups of adjacent molecules. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding occurs between a carboxyl group and the thiazole ring. This extensive hydrogen bonding results in a closely overlapped arrangement of the coordination basal plane and the thiazole ring of a neighboring molecule.

Experimental

An aqueous solution (20 ml) containing $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.086 \mathrm{~g}$, $0.5 \mathrm{mmol})$, oxydiacetic acid hydrate $(0.076 \mathrm{~g}, 0.5 \mathrm{mmol})$ and NaOH $(0.04 \mathrm{~g}, 1 \mathrm{mmol})$ was refluxed for 5 h . Heating of the reaction mixture was stopped and DABT $(0.10 \mathrm{~g}, 0.5 \mathrm{mmol})$ was added to the solution. The DABT dissolved quickly in the hot solution and the product precipitated shortly afterwards. The hot solution was filtered imme-
diately and the filtrate was cooled to room temperature and filtered again. The final filtrate was kept at room temperature and green crystals of suitable size were obtained after 5 d .

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O} \quad Z=2$
$M_{r}=411.93$
Triclinic, $P \overline{1}$
$a=9.688$ (4) \AA
$b=9.720(4) \AA$
$c=9.831$ (4) \AA
$\alpha=68.64$ (3) ${ }^{\circ}$
$\beta=62.33(3)^{\circ}$
$\gamma=71.74$ (3) ${ }^{\circ}$
$V=751.8(6) \AA^{3}$
$Z=2$
$D_{x}=1.8$
$D_{x}=1.820 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=5.1-12.8^{\circ}$
$\mu=1.77 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, green
$0.20 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Rigaku AFC-7S diffractometer $\omega / 2 \theta$ scans

$$
R_{\mathrm{int}}=0.014
$$

Absorption correction: ψ scan

$$
\theta_{\max }=26.0^{\circ}
$$

$h=-11 \rightarrow 11$
$k=-11 \rightarrow 0$
(North et al., 1968)
$l=-12 \rightarrow 11$
$T_{\text {min }}=0.702, T_{\text {max }}=0.761$
3 standard reflections every 150 reflections
2932 independent reflections
2166 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.093$
$S=1.03$
2932 reflections
208 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

$\mathrm{Cu}-\mathrm{O} 3$	$1.930(2)$	$\mathrm{Cu}-\mathrm{N}^{\prime}{ }^{\prime}$	$1.990(3)$
$\mathrm{Cu}-\mathrm{O} 1$	$1.955(2)$	$\mathrm{Cu}-\mathrm{N} 3$	$2.005(3)$
$\mathrm{Cu}-\mathrm{O} 5$	$2.442(3)$		
			$77.19(9)$
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{O} 1$	$89.27(10)$	$\mathrm{O}-\mathrm{Cu}-\mathrm{O} 3$	$106.27(10)$
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{N} 3^{\prime}$	$174.53(10)$	$\mathrm{O} 5-\mathrm{Cu}-\mathrm{N} 3$	$107.18(10)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 3^{\prime}$	$94.86(11)$	$\mathrm{O} 5-\mathrm{Cu}-\mathrm{N} 3^{\prime}$	$102.47(19)$
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{N} 3$	$93.14(11)$	$\mathrm{Cu}-\mathrm{O} 5-\mathrm{C} 12$	$100.32(19)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 3$	$175.90(10)$	$\mathrm{Cu}-\mathrm{O} 5-\mathrm{C} 14$	$113.6(3)$
$\mathrm{N} 3^{\prime}-\mathrm{Cu}-\mathrm{N} 3$	$82.53(11)$	$\mathrm{C} 12-\mathrm{O} 5-\mathrm{C} 14$	
$\mathrm{O} 5-\mathrm{Cu}-\mathrm{O} 1$	$77.50(9)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3$	0.98	2.16	$2.894(4)$	130
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.92	2.09	$2.935(4)$	153
$\mathrm{~N}^{\prime}-\mathrm{H} 2 C \cdots \mathrm{O} 1$	0.94	2.06	$2.891(4)$	147
$\mathrm{~N}^{\prime}-\mathrm{H} 2 D \cdots 6^{\mathrm{ii}}$	0.99	1.83	$2.781(4)$	159
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 4^{\mathrm{iii}}$	0.97	1.87	$2.796(5)$	159
$\mathrm{O} 6-\mathrm{H} 6 B \cdots \mathrm{O} 2$	0.97	1.86	$2.824(4)$	170
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{iv}}$	0.93	2.16	$3.088(5)$	179

Symmetry codes: (i) $x, y, 1+z$; (ii) $1-x, 1-y,-z$; (iii) $1-x,-y, 1-z$; (iv) $x, 1+y, z$.

H atoms attached to C atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 or $0.97 \AA$, and were included in the final cycles of refinement as riding, with $U_{\text {iso }}(\mathrm{H})$ values equal to $1.2 U_{\text {eq }}$ of the carrier atoms. Other H atoms were located in a difference Fourier
map and were included in the structure-factor calculations with fixed positional and isotropic displacement parameters $\left[U_{\text {iso }}(H)=0.06 \AA^{2}\right]$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1992); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (grant Nos. 29973036 and 20240430654).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1428). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Baker, A. T. \& Goodwin, H. A. (1985). Aust. J. Chem. 38, 851-856.

Bonomo, R. P., Rizzarelli, E., Bresciani-Pahor, N. \& Nardin, G. (1981). Inorg. Chim. Acta, 54, L17-19.
Bresciani-Pahor, N., Nardin, G., Bonomo, R. P. \& Rizzarelli, E. (1983). J. Chem. Soc. Dalton Trans. pp. 1797-1799.
Christou, G., Perlepes, S. P., Libby, E., Folting, K., Huffman, J. C., Webb, R. J. \& Hendrickson, D. N. (1990). Inorg. Chem. 29, 3657-3666.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fisher, L. M., Kurod, R. \& Sakai, T. (1985). Biochemistry, 24, 3199-3207.
Hatfield, W. E., Helms, J. H., Rohrs, B. R., Singh, P., Wasson, J. R. \& Weller, R. R. (1987). Proc. Indian Acad. Sci. Chem. Sci. 98, 23-31.

Liu, J.-G., Nie, J.-J., Xu, D.-J., Xu, Y.-Z., Wu, J.-Y. \& Chiang, M. Y. (2001). Acta Cryst. C57, 354-355.
Liu, J.-G., Xu, D.-J., Sun, W.-L., Wu, Z.-Y., Xu, Y.-Z., Wu, J.-Y. \& Chiang, M. Y. (2003). J. Coord. Chem. 56, 71-76.

Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software and TEXSAN (Version 1.6). MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Powell, A. K., Charnock, J. M., Flood, A. C., Garner, C. D., Ware, M. J. \& Clegg, W. J. (1992). J. Chem. Soc. Dalton Trans. pp. 203-207.
Rodgers, G. E. (1994). In Introduction to Coordination, Solid State, and Descriptive Inorganic Chemistry. Singapore: McGraw-Hill.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Van der Helm, D. \& Tatsch, C. E. (1972). Acta Cryst. B28, 2307-2312.
Waring, M. J. (1981). Ann. Rev. Biochem. 50, 159-192.
Xu, D.-J., Xie, A.-L., Xu, Y.-Z., Nishikawa, K. \& Yasuoka, N. (1998). J. Coord. Chem. 43, 237-242.

